首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19042篇
  免费   3429篇
  国内免费   3709篇
测绘学   672篇
大气科学   1676篇
地球物理   4557篇
地质学   10292篇
海洋学   3471篇
天文学   1452篇
综合类   1170篇
自然地理   2890篇
  2024年   57篇
  2023年   242篇
  2022年   500篇
  2021年   755篇
  2020年   728篇
  2019年   768篇
  2018年   684篇
  2017年   754篇
  2016年   741篇
  2015年   861篇
  2014年   1104篇
  2013年   1315篇
  2012年   1055篇
  2011年   1230篇
  2010年   1073篇
  2009年   1259篇
  2008年   1263篇
  2007年   1313篇
  2006年   1379篇
  2005年   1135篇
  2004年   1115篇
  2003年   961篇
  2002年   886篇
  2001年   769篇
  2000年   715篇
  1999年   601篇
  1998年   556篇
  1997年   417篇
  1996年   335篇
  1995年   329篇
  1994年   288篇
  1993年   218篇
  1992年   162篇
  1991年   122篇
  1990年   97篇
  1989年   98篇
  1988年   58篇
  1987年   45篇
  1986年   37篇
  1985年   56篇
  1984年   32篇
  1983年   17篇
  1982年   8篇
  1981年   17篇
  1980年   6篇
  1979年   4篇
  1978年   11篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   
992.
On 25th January 2019, the tailings dam of the Brumadinho iron mine operated by Vale S/A failed catastrophically. The death toll stood at 259 and 11 people remained missing as of January 2020. This tragedy occurred three years after Mariana’s tailings dam rupture – the most significant tailing dam disaster in Brazilian history. Thus far, a systematic investigation on the cause and effect of the failure has yet to be conducted. Here, we use satellite-driven soil moisture index, multispectral high-resolution imagery and Interferometric Synthetic Aperture Radar (InSAR) products to assess pre-disaster scenarios and the direct causes of the tailings dam collapse. A decreasing trend in the moisture content at the surface and the full evanescence of pond water through time (2011–2019) suggest that the water was gradually penetrating the fill downwards and caused the seepage erosion, saturating the tailings dam. Large-scale slumping of the dam (extensional failure) upon the rupture indicates that the materials of the fill were already saturated. InSAR measurements reveal a dramatic, up to 30 cm subsidence in the dam (at the rear part) within the past 12 months before the dam collapse, signifying that the sediments had been removed from the fill. Although the information on the resistance level of the tailings dam to infiltrations is not available, these pieces of evidence collectively indicate that the seepage erosion (piping) is the primary cause for the chronic weakening of the structure and, hence, the internal “liquefaction” condition. Upon the collapse, the fully saturated mud tailings flowed down the gentle slope area (3.13 × 106 m2), where 73 % were originally covered by tree, grass or agricultural tracts. The toxic mud eventually reached the Paraopeba River after travelling 10 km, abruptly increasing the suspended particulate matter (SPM) concentration and the toxic chemical elements in the river, immediately affecting the local livelihoods that depend on its water. The Paraopeba River is a major tributary of the San Francisco River, the second-longest river in Brazil reaching the Atlantic Ocean. We anticipate that the environmental repercussions of this toxic seepage will be felt throughout the entire basin, especially riverine communities located downstream.  相似文献   
993.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
994.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   
995.
长江口外海上测量除受风浪影响较大外,最重要的问题是潮位控制非常困难。文中简要阐述了开展长江口外潮汐精细化模型研究的方法,介绍了利用潮汐精细化模型对长江口外航路任意点进行潮汐预报的方法,并通过实测数据进行了精度分析,提出了建议。  相似文献   
996.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
997.
Thanks to its simple division into agricultural and forestry land use, the Corbeira catchment (Galicia, Spain) is used as a case study to build a predictive model using hydrogeochemical signatures. Stream data acquired under recessional flow conditions over a one year period were obtained from a sampling station near the downstream end of the catchment, and using principal component analysis, it is shown that some of the analytical parameters are covariant, and some are negatively correlated. These findings support inferences about the pathways of rainfall in the catchment. Specific signatures may be associated with the dominant hydrological source, either surface runoff or subsurface waters: additionally, the dominant land use in that part of the catchment, where the flow originated, can also be predicted. The dominant runoff shows a strong covariance between suspended solids (SS) and particulate phosphorus (PP), with a clear negative correlation with pH. Dissolved organic carbon (DOC) data are associated with this covariant set when these compounds are available in the soils in question. Dissolved phosphorus, total organic nitrogen and dissolved nitrates are also associated with the same covariant set when the runoff flows through areas of extensive agricultural use. The SS ? PP covariance is less significant at lower flows. Typical base flow regimes show a significant covariance between salinity and pH, with a marked negative correlation with SS ? PP set, confirming the dominance of subsurface waters in the baseflow, as expected. Seasonally divergent DOC ? SS behaviour proves to be a useful tracer for rainfall regimes. The DOC trend shows a sinusoidal annual variation in amplitude, determined by the rainfall regime. As a result, flow from the catchment is dominated by surface water whenever there is synchronicity between the peaks of DOC and SS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
The paper offers an analytical determination of the hydraulic properties of an unsaturated soil with reference to its retention curve, which describes the relationship between the volumetric water content and capillarity through matric suction. The analysis combines a particulate approach focused on the physics at the pore scale, including microstructural aspects, with a probabilistic approach where the void space and grain size are considered as random variables. In the end, the soil water characteristic curve of an unsaturated granular medium along a drying path can be derived analytically based on the sole information of particle size distribution. The analysis hinges on the tessellation of a wet granular system into an assemblage of tetrahedral unit cells revealing a pore network upon which capillary physics are computed with respect to pore throat invasion by a non-wetting fluid with evolving pendular capillary bridges. The crux of the paper is to pass from particle size probability distribution to a matching void space distribution to eventually reveal key information such as void cell and solid volume statistics. Making reasonable statistically based assumptions to render calculations tractable, the water retention curve can be readily constructed. Model predictions compare quite favourably with experimental data available for actual soils, especially in the high saturation range. Having a sound scientific basis, the model can be made amenable to address a variety of soils with a wider range of particle sizes.  相似文献   
999.
提出一种基于GPT2w模型化加权平均温度反演大气可降水量的方法,并分析附加系统偏差改正的模型化加权平均温度对可降水量的影响。结果表明,基于GPT2w模型化加权平均温度反演的大气可降水量的精度与基于Bevis公式计算的加权平均温度反演的大气可降水量的精度相当;对GPT2w模型化加权平均温度进行系统偏差改正后,大气可降水量的精度有一定改善,但改善率不到1%。  相似文献   
1000.
Reflecting internal catchment hydrological processes in hydrological models is important for accurate predictions of the impact of climate and land-use change on water resources. Characterizing these processes is however difficult and expensive due to their dynamic nature and spatio-temporal variability. Hydropedology is a relatively new discipline focusing on the synergistic integration of hydrology, soil physics and pedology. Hydropedological interpretations of soils and soil distribution can be used to characterize key hydrological processes, especially in areas with no or limited hydrometric measurements. Here we applied a hydropedological approach to reflect flowpaths through detailed routing in SWAT+ for a 157 ha catchment (Weatherley) in South Africa. We compared the hydropedological approach and a standard (no routing) approach against measured streamflow (two weirs) and soil water contents (13 locations). The catchment was treated as ‘ungauged’ and the model was not calibrated against hydrometric measurements in order to determine the direct contribution of hydropedology on modelling efficiency. Streamflow was predicted well without calibration (NSE > 0.8; R2 > 0.82) for both approaches at both weirs. The standard approach yielded slightly better streamflow predictions. The hydropedological approach resulted in considerable improvements in the simulation of soil water contents (R2 increased from 0.40 to 0.49 and PBIAS decreased from 40% to 20%). The routing capacity of SWAT+ as employed in the hydropedological approach reduced the underestimation of wetland water regimes drastically and resulted in a more accurate representation of the dominant hydrological processes in this catchment. We concluded that hydropedology can be a valuable source of ‘soft data’ to reflect internal catchment structure and processes and, potentially, for realistic calibrations in other studies, especially those conducted in areas with limited hydrometric measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号